NIP24 Plenary II : September 9, 2008 @Pittsburgh

Numerical Simulation of Electrophotography Processes

Hiroyuki Kawamoto Waseda University, Tokyo

1

Outline

Overview of the recent progress of simulation technology for the development of electrophotography processes

- especially developed in Japan

Promotion of simulation technology and education of young engineers in Japan

Charging, Exposure and Fusing Systems

- based on the mechanics of continuous media

- formulated as a set of multi-component, nonstationary, and nonlinear partial differential equations
- numerically solved by the iterative FEM or FDM.

Development, Transfer and Cleaning Systems

- dynamics of toner and/or carrier particles
- the discrete element method (DEM)
- direct observation with a high-speed microscope camera

Charging Devices

Modeling of Contact Charging (one-dimensional analytical)

charged voltage
$$V_c(t) = q(t) \frac{d}{\varepsilon_0 \varepsilon_r}$$

• charge density $q(t + \Delta t) = \frac{\varepsilon_0 \varepsilon_r}{d} \left\{ V_a(t) - \frac{d + z(t)\varepsilon_r}{z(t)\varepsilon_r} V_{th}(t) \right\}$

Micro discharge takes place when (gap voltage) > (Paschen V_{th})

(kv)

Ň

CHARGED VOLTAGE

Calculated and Measured Charging Characteristics

Analysis of Strip Image Defect due to AC Voltage Application

Analysis of Image Defect due to DC Voltage Application

contact roller

- expanded to 2D field
- circumferential transport of charge

M. Kadonaga (Ricoh) 1999

Analysis of Image Defect due to DC Voltage Application

observed image defect

calculated charge density

M. Kadonaga (Ricoh) 1999

Plasma Ozone Synthesis

Ozone Synthesis $\underline{e} + \underline{O}_2$ 20+ $\underline{e} + \underline{O}_2 + \underline{O}_2$ 0₃+ O_2

Plasma Reaction Rate

$$S = 2\pi \int_{r_o}^{R} K_r n_e n_o r dr \qquad \text{(O}_3/\text{sec)}$$

- based on Townsend theory

Measured and Calculated Ozone Concentration

Modeling of Corona Charging

conservation of charges

$$\frac{\partial n_p}{\partial t} + div \left(\begin{array}{c} \mu_p E n_p \end{array} \right) = -R_e n_p n_n \qquad \text{corona} \\ \frac{\partial n_n}{\partial t} + div \left(-\mu_n E n_n \right) = -R_e n_p n_n \qquad \text{local}$$

Poisson's equation

$$div\left(\varepsilon E\right) = e\left(n_p - n_n\right)$$

boundary condition

$$E = E_{p0}$$
 (threshold of corona onset) at wire

Numerical Result

-1000

-800

-600

-400

-200

500

Time (msec)

1000

OPC

effects of rotation and resistivity of OPC

$$J_{p} = \sigma E + \rho v_{0}$$
$$\frac{\partial \rho}{\partial t} + div J_{p} = 0$$

igh density corona wire

Y. Watanabe (Ricoh) 1990

Α

В

Flow Analysis of Ionic Wind

Discharge Field (2D, unipolar)

$$\frac{\partial \boldsymbol{\rho}}{\partial t} + \nabla \left(\boldsymbol{\mu} \boldsymbol{\rho} \left(-\nabla \boldsymbol{\phi} \right) \right) = 0$$
$$\nabla \left(\boldsymbol{\varepsilon} \left(-\nabla \boldsymbol{\phi} \right) \right) = \boldsymbol{\rho}$$

Aerodynamics (3D)

1

$$\frac{\partial \rho_g u}{\partial t} + \rho_g (u \cdot \nabla) u = -\nabla p + \mu_g \Delta u + F$$

Navier-Stokes

 $\boldsymbol{F} = \boldsymbol{\rho}(-\nabla \boldsymbol{\phi})$

Calculated Velocity Distribution

H. Okamoto (Fuji Xerox) 2002

2. Exposure

Formation of Latent Image (3D, time-dependent, 3-unknowns)

conservation of charges
$$\frac{\partial n_p}{\partial t} + div(\mu_p E n_p) = \Gamma - R_e n_p n_n$$
Laser Beam $\frac{\partial n_n}{\partial t} - div(\mu_n E n_n) = \Gamma - R_e n_p n_n$ CTLPoisson'EquationCTL $div(\varepsilon E) = e(n_p - n_n)$ OPC

Calculated Transient Charge Distribution

- Calculated field strength can predict threshold of development.
- Latent image created by an isolated dot spreads even if the thickness of OPC is 10 μm.
- Latent image created by one-by-one dot is suppressed by adjacent dots.

3. Development

Two Approaches for Toner/Carrier Dynamics

<u>Continuous Model</u>

Navier-Stokes

- (Hitachi Printing, Ricoh, Fuji Xerox, ---), 2000

 Discrete Model Discrete Element Method (DEM)

$$m_{i}\ddot{x}_{i} + c_{i}\dot{x}_{i} + k_{i}x_{i} = F_{mechanical} + F_{electrostatic} + F_{magnetic} + x = (x, y, z, \theta_{x}, \theta_{y}, \theta_{z})$$

Mechanical Interaction

Mixing of Toner and Carrier Particles in Auger

H. Mio (Kyoto Fine Particle Technology) 2007

Magnetic Interaction

magnetic force

$$\boldsymbol{f}_{mj} = (\boldsymbol{p}_j \cdot \nabla) \boldsymbol{B}_j, \ \boldsymbol{M}_{mj} = \boldsymbol{p}_j \times \boldsymbol{B}_j$$

magnetic dipole moment

Design of Magnetic Roller

utilized to improve pole pattern of magnetic roller that can efficiently mix toner/carrier particles.

Magnetic Brushes

Simulation

Experiment

H. Kawamoto (Waseda) 2007

Two-Component Development

H. Mio (Kyoto Fine Particle Technology) 2007

Direct Observation of Development by High Speed Camera

H. Kawamoto (Waseda) 2007

4. Transfer

Electrostatic Field in Transfer Process

discharge

Toner Dynamics in Roller Transfer System

Toner particles scatter due to electrical discharge.

M. Kadonaga (Ricoh) 2004

on OPC

on paper

Hollow Defect and Toner Scattering

hollow defect

toner scattering

Hysteresis of Toner Compression

N. Nakayama (Fuji Xerox) 1997

Visco-Elasticity of Toner

S. Hasebe (Fuji Xerox) 2007

6. Cleaning

Acoustic Noise from Cleaner Blade

Low Speed

- stick-slip

H. Kawamoto (Fuji Xerox) 1995

Rated Speed

 coupled nonlinear
vibration

M. Kasama (Fuji Xerox) 2006

Cleaning Performance of Spherical Toner Particles

 μ =0.96, θ =30deg, k_w =10N/m, a/b=1.0 μ =0.96, θ =30deg, k_w =10N/m, <u>a/b=1.23</u>

N. Nakayama (Fuji Xerox) 2004

7. Paper Handling

Improvement of Paper Path for Image Scanner

O. Takehira (Ricoh) 2000

Application for Paper Feeder

H. Seki (Ricoh Printing Systems) 2006

Promotion of Simulation Technology and Education of Young Engineers in Japan

Academic Committees

Three Japanese academic committees to promote the modeling and numerical simulation of electrophotography processes

- The Imaging Society of Japan (ISJ)
 - education of young engineers
 - publish of textbook
- The Japan Society of Mechanical Engineers (JSME)
 - technology exchange on a give-and-take basis
- The Japan Society for Precision Engineering (JSPE)
 - paper handling

Simulation Seminar

The seminar is conducted every year for 15 students.

Students are young engineers in industries.

They do exercise with their own note PC.

Example of Exercise (Thermal Analysis of Belt Nip Fuser)

Students must complete the calculation at the end of one-day lecture !!

Electrophotography

Process & Simulation

Published by The Imaging Society of Japan

Edited by Hirakura (Ricoh) & Kawamoto

Textbook

Concluding Remarks

Simulation technology has been developed and widely utilized for the development of electrophotography machines,

although it had been believed that the simulation is ineffective for the electrophotography.

The electrophotography processes are no longer a black box.

Acknowledgement

I would like to express my sincere gratitude to my colleagues:

Dr. M. Kadonaga (Ricoh) Dr. Y. Watanabe (Ricoh) Mr. O. Takehira (Ricoh) Dr. N. Kuribayashi (Ricoh Printing) Dr. N. Nakayama (Fuji Xerox) Dr. M. Kasama (Fuji Xerox) Dr. T. Ito (Fuji Xerox) Mr. H. Okamoto (Fuji Xerox) Mr. M. Nakano (Canon) Dr. H. Mio (Kyoto Fine Particle Technology)

for their beneficial suggestions and discussions.

Thank you for your attention.

For more information

- Hiroyuki Kawamoto, Prof.
- Waseda University
- Shinjuku, Tokyo
- Phone/FAX: +81-3-5286-3914
- E-mail: kawa@waseda.jp
- http://www.kawamoto.mech.waseda.ac.jp/kawa/

end

Electrophotograpy Processes

History of Electrophotography Technology

