修士論文概要書

2011 年 7 月提出

専攻名 (専門分野)	機械科学	氏名	叶 培	指導	川木一広行	FП
研究指導名	精密工学	学籍番号	CD 5109C076-0	教員	川本 四1	1H
研 究 題 目	機械の隙間に入り込むルナダストの静電シールド機構					

1. まえがき

月面に存在するルナダストと呼ばれる砂塵が月面探査機の可 動部の隙間に入り込むことで故障や性能の低下を招くことが懸 念されている. 月面における低重力, 高真空, および砂が高い 帯電量を持つといった特徴を考慮した上で、この問題を解決す るため、静電力による粉体の運動制御手法に着目して、ルナダ ストが隙間へ侵入することを防ぐ静電シールド機構を考案した. この静電シールド機構は図1のように隙間に対して平行に配 置された 2 本の電極と電源装置より構成されている. 同図に示 した交流電圧を電極に印加することにより、電極の周囲に電界 を形成することで電極に近づいた帯電粒子を静電力により電極 に引き寄せ,隙間の外側に誘導する.本研究では実験と粒子挙 動シミュレーションを行い、機構の特性把握、月面環境での除 去性能の正確的な予測、また実用化に向けた最適な機構の提案 を目的としている.

2. 実験

2.1 実験方法

実験装置は静電シールド装置を設置した実験基板と砂を落下 する装置から構成されている.図2に示したように、振動試験 装置の振動部にアクリル台を設置し、ふるいをアクリル台に固 定する.実験用の月模擬砂をふるいの中に設置し、ふるいだけ を加振することによって、砂を一定の質量流量で均一に落下さ せることができる.ふるいの下に機械の隙間を模擬して作られ た実験基板を設置し、隙間付近に電極を貼り付け、電極に方形 波交流電源回路を接続する.電圧と周波数は調整可能である.

図2 実験装置

除去率を式(1)により定義した. ηi は除去率, mo は電圧を印 加しないときに隙間に入り込む砂の重量,mi は電圧印加時に隙 間に入り込んだ重量である.シールド機構を用いない場合にお ける隙間への砂の侵入量 moを基準とし、それぞれの実験条件に ついて本機構の性能を定量的に評価した.

$$\eta_i = \left(\frac{m_0 - m_i}{m_0}\right) \times 100 \quad [\text{wt\%}] \tag{1}$$

2.2 実験結果

実際の月面探査活動においては、機器の隙間に落ちてくる砂 の量が一定ではないと考えられる.そこで、落下装置から落下 する質量流量を調整しながら、除去性能を測定した、結果を図3 に示す.この実験により、除去率は質量流量によらず、ほぼ変 化しないことがわかった.

次に、印加した交流電圧の電圧と周波数特性を調査した.ま ず印加電圧に関しては、結果を図 4 に示す. しきい値まではほ とんど効果がないが、それ以上では印加電圧に対してほぼ線形

に性能が向上した. 周波数特 性に関しては、結果を図5に 示す. 周波数が 10 Hz 程度ま での低周波領域において除去 率が最大となり, 10 Hz 以上 になると下降する傾向を示し t.

80

¥ 60

₩ 40 北

盘 20

0

(質量流量 1.7 g/s·m 周波数 10 Hz)

0.5 1 1.5 印加電圧 kVp-p

図4 電圧特性

(質量流量 1.7 g/s·m 電圧 1 kV)

3. 粒子挙動シミュレーション

現段階で実験が不可能である月面環境下での除去性能の予測 を目的として、剛体球モデルの個別要素法を用いた粒子挙動シ ミュレーションを行った. 粒子の運動方程式に対応する外力と してクーロン力,分極力,鏡像力,空気抵抗,および重力を考 慮した. クーロン力と鏡像力の計算に必要な粒子の帯電量は, ファラデーケージ法を用いた粒子帯電量によって測定した.ま たクーロン力、分極力、および鏡像力の計算に必要な電界強度 は、有限差分法による電界計算の結果を用いた. 運動方程式を4 次のルンゲタック法で解くことによって、粒子挙動を追跡した.

シミュレーション結果と高速度カメラで撮影した実験の様子 と比較すると(図 6)、両者は定性的におおむね一致した.また 図 7 に示すように、定量的にも、除去率の計算値と実験値がほ ぼ一致した. そこでこのシミュレーターを用いて, 月面での除 去性能を予測した.月面環境では重力が地上の1/6になることと, 空気抵抗が働かないことが地上と異なる.計算の結果,地球上 では最大 60%の除去率に対し、月面ではほぼ 100%の除去率が 予測されており、本機構は月面環境でより有効であることが示 唆された.

高速度カメラ観察の実例

発表論文

- 1. 川本,吉江,<u>叶</u>,機械に付着するルナダストの静電クリーニングシス テム, 第19回 MAGDA コンファレンス (2010) pp.609-611.
- 2. 叶, 吉江, 川本, 機械の隙間に入り込むルナダストの静電シールド機 構, 機会学会年次大会 (2011).