修士論文概要書

2009年1月提出

	2009年1月提出				学籍番号 <u>5107C009-</u>	-1
専門分野	機械工学	氏名	井ノ上 博貴	指導	山木広行 日	印
研究指導	精密工学			教員		
研 究 題 目	宇宙服に付着したルナダストの磁気力を利用した除去機構					

1. まえがき

現在世界各国で計画されている有人月面探査を行うにあた り、ルナダストと呼ばれる粒径数 µm~数百 µmの月面上の粉 塵が宇宙服に付着し、宇宙服の品質や人体に悪影響を及ぼす ことが問題となっている. そこでわれわれは、ルナダストが 磁性体であることに着目し、特殊な磁極配置のマグネットロ ールによりルナダストを除去する機構の開発を行った.本機 構は電源・動力源が不要で小型・軽量であるため、長期間の 月面活動での使用に適している.本研究では、マグネットロ ールの磁場特性、および月模擬砂に作用する磁気力を実験と 数値計算から明らかにすることで、月模擬砂の除去原理を解 明した. さらに, 作製した機構を用いた捕捉・分離実験によ り、月模擬砂の除去特性を把握するとともに、除去過程にお ける月模擬砂の挙動をシミュレーションにより再現した.

2. 実験装置

ルナダスト除去機構概略を図1に示す.除去機構は、マグ ネットロールとその周りを回転するスリーブ、及びルナダス トを回収する容器から構成される.マグネットロールは特殊 な磁極配置により、2つのS極が隣接する区間(反発極)にお

いて磁性粒子に対し磁 気反発が作用するよう に設計されている. 宇宙 服に本機構を接触させ, スリーブを回転させる ことで, スリーブ上でル ナダストを捕捉・搬送・ 分離する.この一連の動 作を繰り返すことでル ナダストを除去すること ができる.

図1 ルナダスト除去機構概略図

3. 月模擬砂除去実験

月模擬砂の除去の様子を図2に示す.図より、月模擬砂を 捕捉後,反発極にて分離可能であることが確認できた.図3 にスリーブ回転数を変化させた時のルナダスト除去効率を示 す. スリーブ回転数 0~800 rpm において,回転数の上昇に伴 い捕捉効率・分離効率が上昇し、回転数 720 rpm で 74%の月 模擬砂を除去することができた.

4. 数値計算

マグネットロール内部に複数個の二次元磁気双極子モーメ ントが配置されていると仮定して、二次元境界の近似計算を 行った.線密度 P_iの二次元磁気双極子モーメント i が二次元 断面内の相対位置 r;に形成する磁束密度 B;は以下のようにな ろ.

$$\boldsymbol{B}_{i} = \frac{\mu_{0}}{2\pi} \left(\frac{2(\boldsymbol{P}_{li} \cdot \boldsymbol{r}_{i})\boldsymbol{r}_{i}}{|\boldsymbol{r}_{i}|^{4}} - \frac{\boldsymbol{P}_{li}}{|\boldsymbol{r}_{i}|^{2}} \right)$$
(1)

CD

ここで、μ0は真空の透磁率である.配置したすべての二次 元磁気双極子モーメントについて式 (1) を立て、それらの総 和をとることによって図4に示すような磁束密度分布を求め た. さらに、外部磁場から図5に示すようなマグネットロー ルの磁気力分布を求め、マグネットロールに付着する月模擬 砂の堆積層高さ分布に対応すること、および反発極上で斥力 が作用することが確認できた.

図4 外部磁場分布計算結果 図5 ロール周りの磁気力分布

粒子の運動解析には Hard Sphere Model による三次元個別要 素法を用いた. 二次 Runge-Kutta 法を用い, 式 (1) に示す運 動方程式を解いた. また, 粒子間衝突には式 (2) に示す衝突 方程式を解いた.ここで、 $\mathbf{x} = (x, y, z), \boldsymbol{\theta} = (\theta_x, \theta_y, \theta_z), m: 粒$ 子質量, F_m : 磁気力, F_v : Van der Waals 力, F_i : 鏡像力, F_i : 液 架橋力, F_a: 重力, F_a: 空気抵抗力, I: 粒子の慣性モーメント, M_m: 磁気モーメント, r: 粒子半径, n: 法線方向単位ベクトル, J: 粒子 i に作用する衝撃力である. 衝突後の状態については* を添えている.

$$m\frac{d\dot{\mathbf{x}}}{dt} = \mathbf{F}_m + \mathbf{F}_v + \mathbf{F}_i + \mathbf{F}_i + \mathbf{F}_g + \mathbf{F}_a \quad , \quad I\frac{d\theta}{dt} = M_m \tag{2}$$
$$\dot{\mathbf{x}}^* = \dot{\mathbf{x}} + J/m \quad , \quad \dot{\theta}^* = \dot{\theta} + m \times J/I \tag{3}$$

$$\dot{\mathbf{x}}^* = \dot{\mathbf{x}} + \mathbf{J} / m$$
, $\boldsymbol{\theta}^* = \boldsymbol{\theta} + r\mathbf{n} \times \mathbf{J} / I$

シミュレーション結果を図6に示す.図より、月模擬砂が (a) のように捕捉され, (b) のように反発極まで搬送された 後にスリーブから分離される様子が再現できた.

発表論文

- 1. 井ノ上,小林,梅津,川本,低電圧で駆動するマイクロ駆動機構, SEAD19 (2007-5) pp.159-160.
- 2. <u>井ノ上</u>,大門,岩永,川本,磁性ナノ粒子を封入したゲルビーズ のパターン形成とマニピュレーション, IIP2008 (2008-3) pp.46-48
- 3. 安部, 井ノ上, 川本, 宇宙服に付着したルナダストの磁気力を利 用した除去機構, MAGDA17 (2008-11) pp.65-68.
- 4. 岡本,井ノ上,川本,磁性マニピュレータによる月模擬砂の個別 操作, 第48回学生員卒業研究発表講習会(2009-3)発表予定
- 5. H. Kawamoto, H. Inoue and Y. Abe, Electromagnetic Cleaner of Lunar Spacesuit, Joint Annual Meeting of LEAG-ICEUM-SRR (2008-9) pp.71.