修士論文概要書

	2009年1月提出						学籍	番号	<u> 5107(</u>	0061 - 9
専門分野	機械工学	· 氏名	西浦	雅登	指	導	11	川本	広行	ÉП
研究指導	精密工学				教	員				1-I-I
研 究 題 目	静電インクジェット現象を利用した感光体ドラムの成膜									

1. 研究目的

電子写真感光体ドラムの成膜技術としては浸漬塗布が主流 であるが、高品質な成膜が可能である反面、装置が大掛かり となるために大量の塗液を使用するという問題がある.これ に対し、静電インクジェット現象では単純で小型の機構を用 いることから、塗液の使用量を最小限に抑えることができ、 また、極微小な液滴の重畳により成膜を行うことでの高品質 な成膜も期待できる.しかしながら、静電インクジェット現 象には条件によって多様な吐出形態に変化するという特徴が あるため、基礎的な特性の把握が重要となる.そこで本研究 では、静電インクジェット現象におけるスプレー状吐出を利 用した成膜技術の開発を目的とし、成膜に適した吐出条件の 解明、および、成膜された感光体膜の評価を行った.

2. 実験方法

静電インクジェット現象により塗液を吐出し, 成膜に必要 な諸特性を把握するために, 図 1 のような実験装置を構成し た. ノズル部分には内径 75~200 μm の絶縁性キャピラリーチ ューブを用い, これを液体針電極として対向する平板電極と の間に電圧を印加することにより静電力で塗液が吐出され る. このノズル先端部を高速度顕微鏡カメラにより観察する

ことで、液滴の形成モ ードを明らかにした. また、平板側に着弾し た、ット径を測定す ることにより飛翔定す るた.さらに、リニア ステージを用いての 成膜を行った.

(1) 液滴の形成モード

印加電圧による針対平板電極間の電流値を図2に,ノズル 先端の様子を図3に示す.放電特性と液滴の形成モードには これまでのインクや水を吐出した場合と同様の傾向が見られ た.すなわち,印加電圧を上げていくと始めはごく微小な暗 電流が流れるだけであるが,ある限界電圧に達すると有意な 電流が流れ始める.それにともない,大きな液滴状の吐出か ら,ノズル先端にテイラーコーンと呼ばれる円錐形のメニス カスを形成し,その先端から液糸が曳き出されるコーンジェ ットと呼ばれる吐出へと変化する.この吐出形態ではクーロ ン力により微小な液滴へ分裂しスプレー状となる.さらに高 い電圧を印加すると液糸が複数引き出されるマルチジェット と呼ばれる吐出形態へと変化する.これらのモード変化はノ ズル径によらず同様であるが,ノズル径の拡大にともないそ の変化点は高電圧域に遷移する.以上から成膜には吐出方向 が安定するコーンジェットの領域が適しているといえる.

(2) スプレー液滴の粒径分布

図4にコーンジェットとなる領域における電圧とノズル径 による液滴径分布を示す.電圧の増大にともない,液滴径が 微小化し4µm程度となること,単一の粒径分布に近づくこと が分かる.これより,最も成膜に適した吐出条件は小径のノ ズルにおいて高電圧を印加したときである.

CD

(3) 成膜

ステージ移動速度を制御することで堆積させる液滴の重畳 回数を変化させ、ライン状に成膜した感光体の断面形状を図 5 に示す.微小な液滴を重ねて配置することで表面の均一な 膜を形成可能であることが確認でき、膜厚は実機に用いられ ている1 µm 以下を実現することができた.以上の結果を元 に、平面状での成膜を行ったものを図6に示す.均一な膜を 形成でき、表面粗さ Ra 0.09 µm を実現した.従来の方式によ る膜の表面粗さは、さらに一桁小さいオーダーであるので改 善の余地があるものの、感光体ドラムの成膜に要求される品 質と膜厚を実現できる可能性を示した.

・多田、<u>西浦</u>、川本、静電場モデルによる針対平板電極系での液滴
挙動の安定性解析、機械学会論文集 C(印刷中)